

M - Tech industrial

Desalination using the PBMR DPP as heat source

J.P. van Ravenswaay, R. Greyvenstein, G. du Plessis

Presented by Willem Kriel

Introduction

- Water Scarcity
- Desalination

PBMR

Desalination Overview

- Multistage Flash Distillation (MSF)
- Multi Effect Distillation (MED)
- Reverse Osmosis (RO)

Desalination with the PBMR Demonstration Power Plant (DPP)

- Multi Effect Distillation (MED)
- Reverse Osmosis (RO)
- Challenges
- Summary

Introduction - Water Scarcity

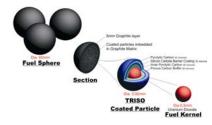
Fresh water is a key element to all societies

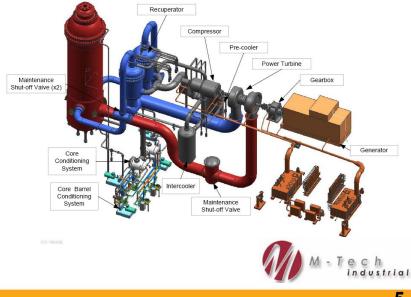
- Agricultural use
- Drinking water
- Process water for industrial use

World wide limitations in the availability of fresh water

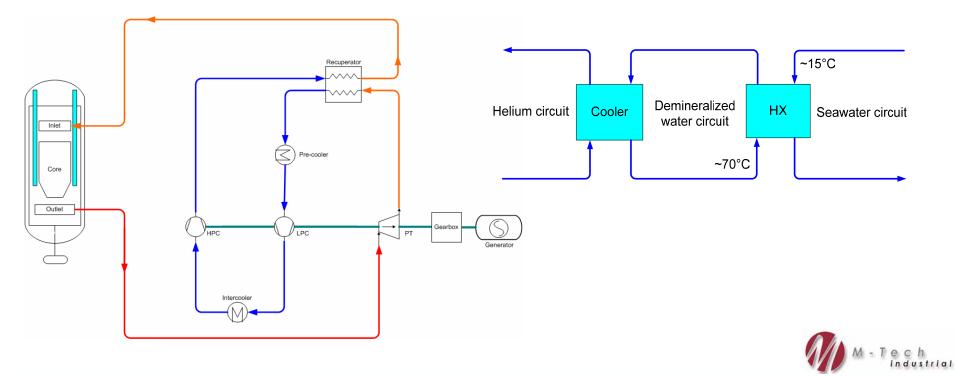
- 97.5% of all water is represented by the oceans
- Bulk of the remaining 2.5% is locked up in the ice caps
- Less than 1% is available for human use
- It is forecasted that two thirds of world population will face water shortages by 2025

Introduction – Desalination


- A total of approximately 34 million m³/day of desalted water is produced by 12,500 plants world wide
- Capacity is increasing annually by 1 million m³/day
- Most of the existing plants use fossil energy sources
- Interest in nuclear desalination has grown worldwide in the past decade for a variety of reasons:
 - Increased water scarcity
 - Economic competitiveness
 - Energy supply diversification
 - Environmental protection carbon emissions
- No commercial HTR desalination plant exist
- PBMR DPP very well suited for desalination



- South Africa, Western Cape, Koeberg
- Construction starts during 2008
- Commissioning 2012/13
- 400 MWt (900°C ROT)
- 165 MWe
- η = ~41%
- German based fuel design
- Helium as working fluid
- Direct recuperative Brayton cycle



- PBMR DPP pre-cooler and inter-cooler reject ~220 MWt of waste heat at ~70°C (suited for thermal desalination)
- LWRs reject waste heat at ~35°C (not suited for thermal desalination)

P

Current status of desalination

• Thermal desalination

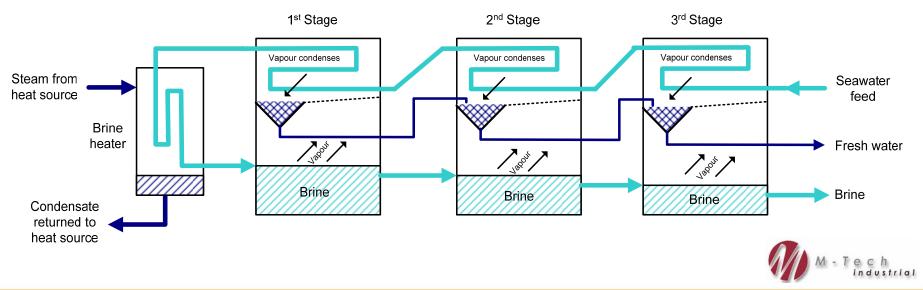
R

- Multistage Flash Distillation (MSF) (from 1950s)
- Multi Effect Distillation (MED) (from 1960s, gained wide acceptance during the 1990s)
- Vapor Compression (VC) (not common for large scale commercial applications)
- Membrane Filtration
 - Reverse Osmosis (RO) (started to gain momentum during 1970s)
 - Consumes electricity rather than heat
 - Fastest growing desalination technology world-wide
- Nuclear desalination experience
 - Nuclear desalination plants in Japan and Kazakhstan operating for ~20 years
 - Nuclear desalination experience exceeds 150 reactor-years with an exceptional safety record as of 2000

B

M

P


Desalination Technologies - MSF

Multistage Flash Distillation (MSF)

- Thermal driven process
- Leading thermal desalination process
- Proven technology

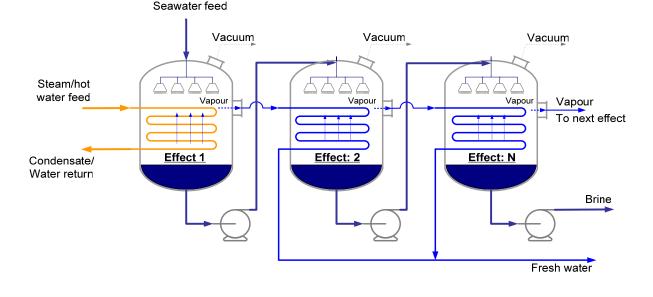
R

- Requires steam as heat source at ~110°C
- Can produce water with 5-25 ppm TDS
- \$1,000 to \$3,000 per m³/day installed capacity [1]
- Units of up to 60,000 m3/day have been built

B

P

Desalination Technologies - MED


Multi Effect Distillation (MED)

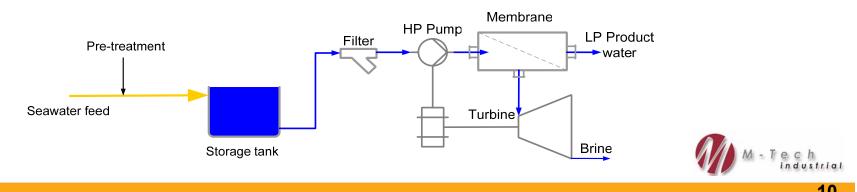
- Thermal driven process
- More efficient evaporation heat transfer than MSF
- Proven technology

R

- Requires low temperature steam/ hot water ~65°C
- Can produce water with 5-25 ppm TDS
- \$900 to \$2,000 per m³/day installed capacity [1]

P

Desalination Technologies - RO


• Reverse Osmosis (RO)

R

Membrane separation process

- Uses electricity rather than heat (for high-pressure pumps 70-80 bar)
- Proven technology
- Requires stringent feed water pretreatment to prevent premature membrane fouling
- Large scale plant can recover 30-40% of the energy from high pressure reject brine by pelton wheels and hydro turbines
- RO plants with energy recovery requires 4-6 kWeh/m³ product water
- Elevated feed water temperatures yield increased water flux per area of membrane
- Waste heat can be utilized to pre-heat RO feed water
- Can produce water with ~400 ppm TDS
- \$900 to \$1,700 per m³/day installed capacity [1]

Desalination for PBMR DPP - MSF

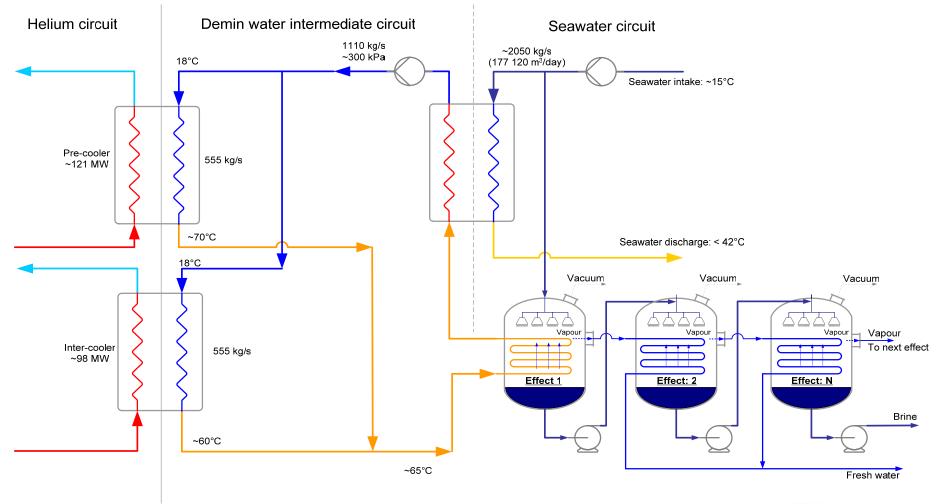
Multistage Flash Distillation (MSF)

- Advantageous where heat is available as low temperature steam at 100-110°C
- Delivers product water with high levels of purity 5-25 ppm TDS from seawater containing 35,000 - 45,000 ppm TDS
- Requires extensive pre-treatment of feed water
- PBMR DPP rejects waste heat at lower temperature ~70°C
- MSF process therefore not ideally suited for coupling with the PBMR DPP

Desalination for PBMR DPP - MED

P B M R

Multi Effect Distillation (MED)


- Recently increased application around the world
- Uses 33% less electric energy than MSF process
- Delivers product water with high levels of purity 5-25 ppm TDS from seawater containing 35,000-45,000 ppm TDS
- In contrast with MSF, MED plants can operate at lower feed water temperatures of ~65°C (LT-MED)

• LT-MED (Low Temperature MED)

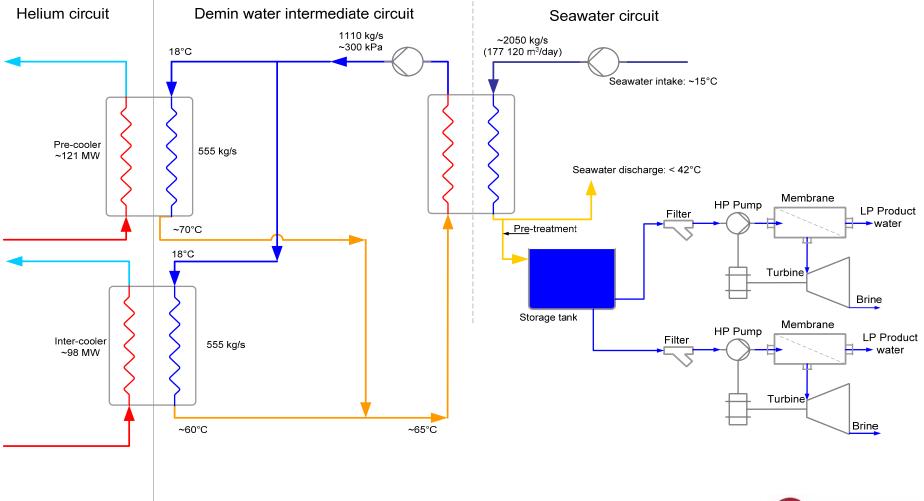
- PBMR DPP rejects heat at ~70°C through pre-cooler and intercooler
- LT-MED plant can be coupled to PBMR DPP with only minor modifications
- The amount of waste heat utilized by the LT-MED plant can be varied
- The ultimate heat sink of the PBMR DPP can reject any unutilized waste heat
- The pre-cooler rejects ~120 MWt at ~70°C
- The inter-cooler rejects ~100 MWt at ~60°C

- 13 -

B

M

R


P

Desalination for PBMR DPP - RO

- Fastest growing segment of the desalination market due to improved membrane performance and reduced manufacturing cost
- Rejected seawater can be used for RO feed water
- PBMR DPP provides the RO plant with the required electricity
- RO plant can consist of a number of modules, which can be expanded as the market for water grows
- RO plant with a 15,000 m³/day capacity would require ~3.8 MWe
- Almost no modifications required to PBMR DPP ultimate heat sink

- 15

PBMR DPP with MED vs. RO

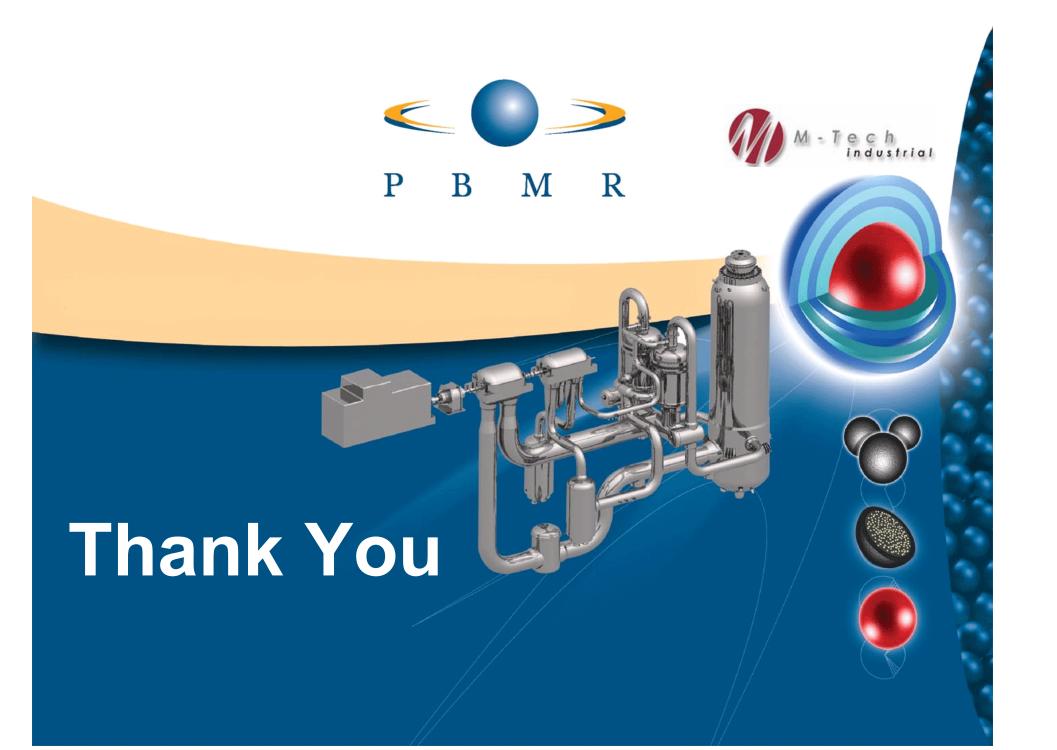
Performance indicator	MED (15,000 m ³ /day)	RO (15,000 m ³ /day)
Daily water sales	\$8,550	\$8,550
PBMR DPP electricity sales (based on 165 MWe)	\$95,040	\$95,040
Electricity sales lost	\$0	\$2,189
Capital cost	~M\$21.75	~M\$19.5
Additional revenue/day	\$8,550	\$6,361
Straight payback	7 years	8.4 years

Assumptions:

- Water production of 15,000 m³/day assumed
- RSA electricity price \$24/MWh (6% growth over the next 6 years)
- MED and RO capital cost assumed to be \$1450 and \$1300 per m³/day capacity, respectively
- Western Cape water sale price \$0.57/m³ (6% growth over the next 6 years)
- Straight payback does not include time value of money

- 16

- MED and RO options for the PBMR DPP remains to be assessed in terms of feed water pre-treatment requirements
- A detailed economic trade-off study needs to be performed to determine the best suited option
- The fresh water market in the surrounding areas of the Koeberg Nuclear Site needs to be assessed
 - The market will have a significant influence on the choice of the desalination option
 - MED produces industrial quality water
 - RO produces lower quality fit for human use


- PBMR DPP can address water scarcity concerns through desalination
- MED and RO are mature and proven desalination technologies
- PBMR DPP waste heat is ideally suited for the LT-MED process
- LT-MED utilizing 220 MWt waste heat could produce 15,000-30,000 m³/day^{*}
- Rejected seawater can serve as pre-heated feed water for a RO plant
- Size of RO plant a function of electricity available for desalination

Ρ

*To be confirmed with detailed thermal-hydraulic model and economic evaluation

- 18 -

